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Abstract. The average jump rate for particles undergoing diffusion in disordered systems is
calculated for arbitrary concentrations of particles. The disorder model considered is a combination
of site-energy and barrier-energy disorder. Uniform and Gaussian distribution functions are used
as examples. The average jump rate does not show Arrhenius behaviour in general, but can in
particular cases. The tracer diffusion coefficient is deduced from the average jump rate in the low-
concentration limit for the site-energy disorder model for which there are no spatial correlations
in successive jumps. For models where spatial correlations do occur, expressions for the diffusion
coefficient and the average jump rate can be used to obtain information about the correlations.

1. Introduction

The average jump rate of particles undergoing diffusion in an ordered system is a
straightforward parameter. The usual physical model assumed is that a particle has a rate
of attempted jumps, which is of Arrhenius form, to a nearest-neighbour site and that the
attempted jump is successful if the target site is vacant. The average rate of jumps0 away
from a site is then

0 = Z00(1− c)e−βE (1)

where00 is a constant,E is the energy barrier,c is the probability of the target site being
occupied by a particle,Z is the coordination number of the structure andβ = 1/(kT ).

The average jump rate becomes more complicated to evaluate when the sites for the
diffusing particles are not equivalent. An example is the jump rate of vacancies at very low
concentrations in metals containing dilute impurities. The jump rate of a vacancy depends on
its proximity to a solute atom and the evaluation of the average jump rate requires consideration
of the different possible jump rates near an impurity weighted by the probability of occupation
of the vacancy at each type of site. The average jump rate can then be evaluated for particular
jump frequency models (Ishioka and Koiwa 1984).

Similar considerations apply to the average jump rate of particles diffusing in disordered
systems; it is necessary to consider the possible jump rates in the system and weight these with
the occupation probabilities. A common model for diffusion in disordered systems is that in
which the site energies are described by some distribution functionNs(E) and the jumps occur
to neighbouring sites over barriers which have another distributionNb(E). These distributions
will be assumed to be independent functions although correlations between site energies and
barrier energies could certainly occur in practice.
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The average jump rate0 in disordered systems is of interest for several reasons. It is
related to the tracer diffusion coefficientD by

D = R2(t)

2dt
= R2(t)

2dN(t)

N(t)

t
= 1

2d
R20 (2)

whered is the dimensionality of the system,R2(t) is the mean square displacement after a
long time t , N(t) is the mean number of jumps in a timet , R2 = R2(t)/N(t) is the mean
square displacement per jump and0 = N(t)/t is the average jump rate. If successive jumps
of a particle are not correlated, thenR2 is the mean square distanceR2

1 for a single jump. For
diffusion models with no correlations, knowledge of the average jump rate then givesD. If
there are correlations between successive jumps thenR2 = fR2

1 wheref is the correlation
factor. Alternatively, a correlation factorf1 could be defined byR2 = f1a

2 wherea is the
mean jump distance. If the diffusion coefficient is known in such cases, an expression for0

can provide information on the correlation factors. How0 depends on temperature, particle
concentrationc and the distribution functions is relevant in both cases to understanding the
microscopic details of diffusion.

It has been shown by Limoge and Bocquet (1990) and Mussawisadeet al ((1997), to be
referred to as MWK) that a suitable combination of site-energy and barrier-energy disorder
can cause near-Arrhenius behaviour of the temperature dependence of the diffusion constant
D. It is of interest to analyse the dependence of the average jump rate on temperature and
particle concentration in order to determine the relative roles of0 and correlation effects in
producing this result.

The average jump rate is also of importance in Monte Carlo simulations of diffusion
in disordered systems. Knowledge of0 would only require the calculation of the time-
independent quantityR2 in a simulation to obtainD from equation (2). Verification of a
computed0 from a simulation against a rigorous calculated value could also be a useful check
on the simulation.

The average jump rate is a relevant parameter in some Monte Carlo calculations of rates
of nuclear spin–lattice relaxation due to diffusion in disordered systems (Huaet al 1997).
These Monte Carlo simulations calculated the required magnetic dipolar correlation functions
in terms of the average jump rate. The form of0 is then needed to obtain the relaxation
rates as functions of temperature. An approximate analysis of0 for a uniform distribution of
site energies was undertaken by Huaet al (1997). Another approach to calculating nuclear
spin-relaxation rates in disordered systems has recently been developed (Cameron and Sholl
1999) which is based on the technique described here for evaluating0.

There has been considerable effort devoted to analysing diffusion in disordered systems
for a model of diffusion on ordered lattices with the disorder imposed on the jump rates (see,
for example, Kehr and Wichmann (1996), MWK, Kirchheim (1997)). The analysis developed
here for the average jump rate and diffusion does not require the assumption of geometric
ordering.

The general expression for the average rate of jumps0 due to diffusion in disordered
systems is derived in section 2. It is assumed that the particles diffuse amongst a set of sites
which have a specified site-energy distribution and also have an independent barrier-energy
distribution for jumps between sites. It is also assumed that only a single particle may occupy
a site and that the energy distributions are independent of temperature and the concentration of
the diffusing species. The theory could be extended to more general conditions if appropriate
models for correlations between the distribution functions, or the effects of interactions between
the particles were assumed. The form of0 for a uniform distribution and a Gaussian distribution
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are considered as examples in section 3. A complete analytic solution is possible for the uniform
distribution. Applications to the theory of tracer diffusion are discussed in section 4.

2. Average jump rate

The probability of occupation of a site in a disordered system depends on the normalized site-
energy distributionNs(E). When multiple occupancy of a site is excluded, the probability of
occupation of a site with energyE is given by the Fermi–Dirac function

p(E) = 1

e(E−µ)β + 1
(3)

whereµ is the chemical potential. The chemical potential is related to the average concentration
of diffusing particles by

c =
∫ ∞
−∞

p(E)Ns(E) dE. (4)

The average jump rate0 is then

0 = 1

c

∫ ∞
−∞

p(E)Ns(E) dE
∫ ∞
−∞

Nb(E1)Z(1− c)0(E,E1) dE1 (5)

where0(E,E1) is the rate of jumps from a site with energyE to one ofZ nearest neighbours
across a barrier with energyE1 andNb(E1) is the normalized distribution of barrier energies.
The factor(1−c) accounts for the blocking of this attempted jump if the target site is occupied.
It will be assumed that0(E,E1) is of the Arrhenius form:

0(E,E1) = 00e−(E1−E)β (6)

and that00 is a constant. Since it is assumed that the site-energy distributionNs(E) and the
barrier-energy distributionNb(E1) are independent functions, the value of the numberZ of
nearest neighbours may be taken as the mean coordination number.

The expression (5) for the average jump rate could be generalized to include more general
models in which there are correlations between the energyE of a site, the number of neighbours
Z, the value of00 and the barrier-energy distributionNb(E1). Such models would require
assumptions regarding the nature of the correlations and the appropriate weightings of the
functions in the integrals.

It is useful to express0 in terms of the jump rateγ corresponding to the rate for the
average site energyE and average barrier energyE1, defined by

γ = Z(1− c)00e−(E1−E)β. (7)

The frequencyγ is thus the mean jump rate forδ-function distributions and is of Arrhenius
form. The ratio0/γ shows the deviation of0 from Arrhenius behaviour. Changing the
variablesE andE1 to

ε = (E − E)/(E1− E) and ε1 = (E1− E1)/(E1− E)
and defining

β1 = (E1− E)β and µ1 = (µ− E)/(E1− E)
equation (5) can be written as

0/γ = Fs(β1, c)Fb(β1) (8)

Fs(β1, c) = 1

c

∫ ∞
−∞

p(ε)Ns(ε)e
εβ1 dε (9)

Fb(β1) =
∫ ∞
−∞

Nb(ε1)e
−ε1β1 dε1. (10)
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The relationship betweenµ1 andc is

c =
∫ ∞
−∞

Ns(ε)

e(ε−µ1)β1 + 1
dε. (11)

A useful form forFs(β1, c) is

Fs(β1, c) = 1− c
c

eµ1β1 (12)

which can be verified by writing(1− c) in the numerator as the normalization integral for
Ns(ε) minus equation (11). ForNs(ε) an even function, it can be shown from equation (11)
that ifµ1 is the chemical potential for a concentrationc, then−µ1 is the chemical potential for
the concentration 1−c. It then follows from equation (12) thatFs(β1, 1−c) = F−1

s (β1, c) and
Fs(β1, 1/2) = 1. This result of Arrhenius behaviour for the site-energy model withc = 0.5
was found numerically for the special case of a uniform distribution by Huaet al (1997).

The functionsFs(β1, c) andFb(β1) give the deviation of0 from Arrhenius behaviour
for the site-energy and barrier-energy disorder, respectively. The effects are decoupled and
multiplicative, with the barrier-energy effects independent ofc.

In the low-concentration limitc � 1, the chemical potentialµ1 becomes a large negative
quantity, so equation (11) becomes

ce−µ1β1 =
∫ ∞
−∞

Ns(ε)e
−εβ1 dε. (13)

The Fermi–Dirac function then becomes the Boltzmann distribution

p(ε) = ce−εβ1

/(∫ ∞
−∞

Ns(ε)e
−εβ1 dε

)
(14)

andFs(β1, c) becomesF−1
s (β1) where

Fs(β1) =
∫ ∞
−∞

Ns(ε)e
−εβ1 dε. (15)

The average jump rate in the low-concentration limit is therefore

0 = Fb(β1)

Fs(β1)
γ . (16)

The deviations from Arrhenius behaviour due to the site-energy and barrier-energy disorders
therefore tend to cancel in this limit and exact Arrhenius behaviour would occur if the
distribution functions for the disorders were the same.

3. Examples

The form of0/γ can be evaluated, analytically or numerically, for any specified distribution
functions from equations (8)–(12). Two distributions are considered: a uniform distribution
and a Gaussian distribution. The uniform distribution is

N(E) =
{

1/(2δ) for E − δ < E < E + δ

0 otherwise

and the Gaussian distribution is

N(E) = (2πσ 2)−1/2 exp[−(E − E)2/(2σ 2)].

A complete analytic solution is possible for the uniform distribution. Integrating equation (11)
gives the chemical potentialµ1 in the form

e−µ1β1 = 1

x

x2 − x2c

x2c − 1
(17)
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wherex = exp(δ1β1) and δ1 = δ/(E1 − E). The functionFs(β1, c) is then given by
equation (12). The functionFb(β1) from equation (10) is sinh(δ1β1)/(δ1β1). For the Gaussian
distribution,Fb(β1) = e(β1σ1)

2/2 whereσ1 = σ/(E1−E). It is necessary to evaluateFs(β1, c)

numerically in this case by computingµ1 from equation (11) and then using equation (12).
Some examples of the effects of disorder on the average jump rate are shown in figure 1.

The figure displays plots of ln[e−β1Fs(β1, c)] versusβ1 to show the types of deviation from
Arrhenius behaviour. Results are shown for the uniform distribution withδ1 = 0.3 and
c = 0.7, 0.9 and 0.99, and for the Gaussian distribution withσ1 = 0.15 andc � 1, c = 0.1
and 0.3. For both distributions, exact Arrhenius behaviour results for site-energy disorder
with c = 0.5, and the results for 1− c can be deduced fromFs(β1, 1− c) = F−1

s (β1, c). It
can be seen that the effect of the site-energy disorder is to enhance the jump rate above the
Arrhenius form (upward curvature) forc > 1/2 and to diminish it (downward curvature) for
c < 1/2. The effect of barrier-energy disorder can also be deduced from the figure because
the low-concentration limit of the site-energy disorder gives the inverse of the barrier-energy
disorder functionFb(β1) for the same distribution function. For example, the enhancement of
the average jump rate above the Arrhenius form for barrier-energy disorder for the Gaussian
distribution in the figure is the same as the reduction below the Arrhenius form for the curve
for c � 1 for the site-energy disorder. It should be noted that the approach of the curves in
the figure to the limit ofc � 1 is very slow for the Gaussian distribution, as can be seen from
the difference between the curves forc = 0.1 and the limitc � 1.

Figure 1. Plots of ln[e−β1Fs(β1, c)] versusβ1 for the uniform distribution withδ1 = 0.3 and
c = 0.7, 0.9 and 0.99, and for the Gaussian distribution withσ1 = 0.15 andc � 1, c = 0.1 and
0.3. The values ofc shown in the figure label the groups of curves from left to right.

The combined effect of barrier-energy and site-energy disorder on the average jump rate is
therefore the following. At low concentrationsc the upward curvature due to the barrier-energy
disorder tends to be cancelled by the downward curvature due to the site-energy disorder. The
upward curvature due to the barrier-energy disorder is independent ofc while the downward
curvature due to the site-energy disorder decreases and becomes zero atc = 0.5. The resulting
effect atc = 0.5 is therefore just the upward curvature due to the barrier-energy disorder. For
concentrationsc > 0.5, the two types of disorder add, to give enhanced upward curvature.
The above conclusions are valid in all dimensions.
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4. Diffusion

The tracer diffusion coefficientD involves the average jump rate0 and the mean square
displacement per jumpR2 according to equation (2). The above expressions for0 can therefore
giveD if R2 can be obtained. A model where this is possible is the low-concentration limit
of site-energy disorder only. In this case there are no spatial correlations between successive
jumps and so the correlation factorf = 1. The diffusion coefficient is then

Dsite = 1

2d
R2

1γ
/(∫ ∞

−∞
Ns(ε)e

−εβ1 dε

)
(18)

from equations (2), (8) and (15). The value ofR2
1 could be evaluated straightforwardly for

any model of spatial disorder, taking into account the probabilities of occupation of sites and
the weightings of possible jump distances. This expression forD agrees with that obtained
by MWK for the case of diffusion on a lattice with disordered transition rates. The present
derivation extends this exact result to diffusion on a system with structural disorder as well
as disordered transition rates. The above result (18) forDsite is valid in all dimensions in the
low-concentration limit for site-energy disorder. If the structure of the system does not depend
on temperature, the temperature dependence ofD is given by the temperature dependence
of 0.

Another exact result known is the expression forD in the low-concentration limit for
one-dimensional diffusion on lattices with disordered transition rates (MWK), or on periodic
structures with many inequivalent sites per unit cell (Braun and Sholl 1998). For a combination
of independent site-energy and barrier-energy disorder, the result is, in the present notation,

Dcomb = a2γ

2

/(∫ ∞
−∞

Ns(ε)e
−εβ1 dε

∫ ∞
−∞

Nb(ε1)e
ε1β1 dε1

)
(19)

wherea is the mean distance between sites. The occurrence of the mean separation squared
in this expression, rather than the mean square jump distance as in (18), is a consequence of
the periodicity of the lattice in the above models. It follows that an Arrhenius plot exhibits
downward curvature for these models (MWK, Braun and Sholl 1998). The expression for the
average jump rate enables the mean square jump distanceR2 to be deduced from equation (2)
and it is

(R2/a2)−1 =
∫ ∞
−∞

Nb(ε1)e
−ε1β1 dε1

∫ ∞
−∞

Nb(ε1)e
ε1β1 dε1. (20)

which shows the effect of the spatial correlations of the jumps as a result of the barrier-energy
distribution. For a Gaussian distribution,R2/a2 = e−β

2
1σ

2
1 . A similar procedure is possible for

any case where an exact, or approximate, result forD is available. The result forD combined
with equation (2) and the expression for0 enablesR2 and the consequent correlation factor to
be deduced.

An expression forDsite for the site-energy model valid for arbitrary concentrationc can
be obtained from equations (2) and (8), and may be expressed as

D = D0
(1− c)2

c
e(µ−E)β (21)

where the factorD0 is

D0 = R2

2d
Z00e−(E1−E)β. (22)

This expression forD has been obtained previously by Kirchheim (1997) using a different
method. It was argued by Kirchheim that equation (21) is also a reasonable approximation
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irrespective of the form of the barrier-energy distribution. The present derivation shows that if
a barrier-energy distribution is also present, then the termFb(β1) from equation (8) should also
be included as a multiplicative factor in the expression forD. The effect of the approximation
proposed by Kirchheim is therefore to neglect this concentration-independent term.

5. Conclusions

The expression for the average jump rate0 has been derived for particles undergoing diffusion
in disordered systems with site-energy and barrier-energy disorder. The results are valid
in all dimensions and for all particle concentrations, and are not restricted to diffusion on
lattices. Analytic results have been obtained for some simple cases. The theory developed
here for independent site-energy and barrier-energy disorders could easily be extended to
include correlations between the disorder distributions, the jump rate prefactor00 and the
number of neighbours of a site. Such correlations are likely to occur in practice.

The tracer diffusion coefficient can be deduced from0 if there are no spatial correlations
between successive jumps, as in the case of a low concentration of diffusing particles for a
model of random site energies. In cases where spatial correlations between successive jumps
do occur, the expression for0 can provide information about the spatial correlations.

The results derived for0 should be of use in Monte Carlo simulations of diffusion and
related phenomena. They can provide a useful check on the Monte Carlo simulations or can
simplify the simulations by removing the necessity for inclusion of the time dependence in a
simulation.
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